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Abstract—This paper focuses on studying the performance
of general regularized discriminant analysis (RDA) classifiers
based on the Gaussian mixture model with different means and
covariances. RDA offers a rich class of regularization options,
covering as special cases the regularized linear discriminant
analysis (RLDA) and the regularized quadratic discriminant
analysis (RQDA) classifiers. Based on fundamental results from
random matrix theory, we analyze RDA under the double
asymptotic regime where the data dimension and the training
size both increase in a proportional way. Under the double
asymptotic regime and some mild assumptions, we show that
the asymptotic classification error converges to a deterministic
quantity that only depends on the data statistical parameters and
dimensions. This result can be leveraged to select the optimal
parameters that minimize the classification error, thus yielding
the optimal classifier. Numerical results are provided to validate
our theoretical findings on synthetic data showing high accuracy
of our derivations.

I. INTRODUCTION

Classification problems are widely studied in today’s hot
pattern recognition and machine learning fields [1]. Among
them, we distinguish classification approaches based on dis-
criminant analysis, which are extensively used in a large panel
of applications, such as bioinformatics [2], finance [3] to name
a few. Belonging to the larger set of model-based classification
methods, their popularity owes to the fact that they rely
on probabilistic foundations, making them optimal under the
assumptions they have been built upon. Linear discriminant
analysis (LDA) and Quadratic discriminant analysis (QDA)
are the most typical cases of discriminant analysis. Both of
them are based on the assumption that data from each class
are drawn from a specific Gaussian distribution. The single
difference lies in that LDA assumes the same covariance
matrix for all classes, while QDA allows different covariance
matrices. Under the Gaussian assumption and assuming the
knowledge of the mean and covariance matrices for each class,
LDA and QDA produce the classifiers that minimize the mis-
classification error rate. This high performance is, however, in
practice not always guaranteed. The major reason for that is
related to the fact that the means and covariance matrices as-
sociated with each class could not be perfectly acquired. They
can instead be estimated based on available training sets for
which the class labels are given. This results in performance
losses which become all the more large when the sample size
for each class is small with respect to their dimension, causing
the estimated covariance matrices to be highly inaccurate
and ill-conditioned. One approach to get around this issue,

which dates back to the early works of Friedman [4], is to
regularize the covariance matrix. The regularization artifice
serves to improve the stability of these estimates by shrinking
them towards the identity matrix. This can be accomplished
by employing one regularization parameter in LDA or QDA,
giving rise to what is known as regularized LDA (R-LDA)
and regularized QDA (R-QDA). A better flexibility can be
obtained by using two regularization parameters offering a
better regulation of the weights associated with samples of
each class. This approach, which seemingly can bring better
performances, is known as regularized discriminant analysis
(RDA).

A lot of attention has been devoted to analyzing the per-
formances of R-LDA and R-QDA classifiers under several
regimes. One frequently used regime, is the double asymptotic
regime in which the number of samples and their dimensions
grow large with the same pace. The interest of this regime lies
in that it allows leveraging a large body of results from the
theory of random matrices, opening up possibilities of accurate
characterization of the asymptotic misclassification error rate.
Towards this goal, the work in [5] studies the asymptotic mis-
classification error rate of the R-LDA, while the R-QDA has
only recently been analyzed in [6]. To the best of the authors’
knowledge, the RDA, which should offer better capabilities,
has not been theoretically studied. The present work aims to
fill this gap. Restricting our attention to binary classification,
we analyse the asymptotic misclassification error rate for the
RDA. In particular, we identify sufficient assumptions on
the distance between covariance matrices and means of both
classes ensuring non-trivial classification error rate. Under
these assumptions, we show that the misclassification error rate
can be approximated in the asymptotic regime by deterministic
quantities that depend solely on the samples’ size and their
dimensions as well as the means and covariances of each class.
The major interests behind this result are twofold. First, it
allows to enlighten the impact of the intervening parameters
on the classification performances. Second, it can be used in
practice to properly tune the regularization parameters, so as
to reap the full potential of RDA.

In a nutshell, the contributions are summarized as follows
• Under some mild assumptions, we show that the classi-

fication error rate approaches a non-trivial deterministic
quantity that only depends on the classes’ statistics and
the problem’s dimension.

• Based on the derived deterministic classification error, we



illustrate the importance of properly selecting the pair of
parameters that minimizes the misclassification error rate.

• We validate the theoretical results using synthetic data
and demonstrate the accuracy of our findings.

The rest of this paper is organized as follows: Section II
introduces the RDA problem. Section III exposes the assump-
tions and the theoretical findings. The detailed proofs for the
theorems can be found in the full version of this paper. Finally,
we validate the accuracy of our derived results in section IV
prior to concluding in section V.

II. PROBLEM STATEMENT

A. Notations

Throughout this paper, we use non-boldface lowercase let-
ters to denote scalars, boldface lowercase letters to denote
vectors and boldface uppercase letters to denote matrices.
Ip denotes the p dimensional identity matrix. ‖.‖ denotes
the Euclidean norm for vectors and the spectral norm for
matrices. (.)

T , tr (.) and |.| respectively denote the transpose,
the trace and the determinant of a matrix. For two functionals
f and g, we say that f = O (g), if ∃ 0 < M < ∞ such
that |f |≤ M |g|. P (.) denotes the probability measure. a.s.−−→
denotes the almost sure convergence of random variables.

Φ (x) =
∫ x
−∞

exp
(
− t2

2

)
√
2π

dt denotes the cumulative density
function (CDF) of the standard normal distribution.

B. RDA classifier for Binary Classification

We consider the binary classification problem in which we
aim to assign an observation x ∈ Rp to the class Ci, i ∈ {0, 1}
which x most likely belongs to. We assume that observations
vectors sampled from class Ci, i ∈ {0, 1} follow a multivariate
Gaussian distribution with mean µi ∈ Rp and covariance Σi ∈
Rp×p. Denote the prior probability of x belonging to class Ci
by πi, i ∈ {0, 1}. The Bayes classifier is thus the one that
maximizes the posterior probability [7], which boils down to
selecting the class that corresponds to the highest classification
score δRDAi (x), i ∈ {0, 1} where

δRDAi (x) = −1

2
log|Σi|−

1

2
(x− µi)T Σ−1i (x− µi) + log πi.

(1)

More formally, we assign x to class i∗ where

i∗ = arg max
i∈{0,1}

δRDAi (x) . (2)

The discriminant function δRDAi (x) involves the exact statis-
tics of each class, namely, their associated mean vectors and
covariances. In practice, these parameters could not be per-
fectly known beforehand. They are estimated using available
training data. We assume that ni, i ∈ {0, 1} independent
training samples are provided for class Ci, respectively denoted
by S0 = {xl ∈ C0}n0

l=1 and S1 = {xl ∈ C1}n0+n1=n
l=n0+1 .

Based on this training data, we consider the following
sample estimates of the mean and covariance matrices

xi =
1

ni

∑
l∈Ti

xl, i ∈ {0, 1}.

Σ̂i =
1

ni − 1

∑
l∈Ti

(xl − xi) (xl − xi)
T
, i ∈ {0, 1}.

Σ̂ =
n0 − 1

n− 2
Σ̂0 +

n1 − 1

n− 2
Σ̂1,

where Σ̂ is the pooled sample covariance. LDA and QDA
classifiers are respectively obtained when Σ̂ or Σ̂i are used in
place of Σi, i ∈ {0, 1}. They can be viewed as extreme cases
of the RDA which consists in using the following regularized
covariance matrix

Σ̂i (λ) =
(1− λ)niΣ̂i + λnΣ̂

(1− λ)ni + λn
, i ∈ {0, 1},

where λ controls the shrinkage of the individual covariance
of QDA toward the pooled covariance matrix in LDA. In
this manner, they define a parametrized class of discriminant
analysis classifiers ranging from LDA (λ = 1) to QDA
(λ = 0). If the training size is much lower than the data
dimension, Σ̂i (λ) is singular. Singularity concerns will thus
arise if it is directly plugged in δRDAi (x) in place of Σi.
To overcome these issues, a common way is to use a second
regularization parameter γ ∈ [0, 1] aiming to shrinking Σ̂i (λ)
towards the identity matrix. The regularized covariance matrix
that is used in RDA takes thus the following form

Σ̂i (λ, γ) = γ
(1− λ)niΣ̂i + λnΣ̂

(1− λ)ni + λn
+ (1− γ)Ip.

Defining the following quantities

H0 =
[
(1− γ)Ip + α0Σ̂0 + β0Σ̂1

]−1
.

α0 =
n0γ

n0 + λn1
, β0 =

n1γλ

n0 + λn1
.

H1 =
[
(1− γ)Ip + α1Σ̂0 + β1Σ̂1

]−1
.

α1 =
n0γλ

n1 + λn0
, β1 =

n1γ

n1 + λn0
,

the discriminant rule in (1) with plug-in estimators for RDA
simplifies to

δ̂RDAi (x) =
1

2
log|Hi|−

1

2
(x− xi)

T
Hi (x− xi) + log πi.

(3)

Conditioning on the training samples Si, i ∈ {0, 1}, the
conditional misclassification error rate associated to class Ci
is given by

εRDAi = P
[
(−1)

i
δ̂RDA0 (x) < (−1)

i
δ̂RDA1 (x) |x ∈ Ci

]
.

(4)

Thus, the total misclassification error rate writes as

εRDA = π0ε
RDA
0 + π1ε

RDA
1 .



It is also important to note that using some basic manipula-
tions, the conditional misclassification error rate can be written
as

εRDAi = P
[
ωTBiω + 2ωTyi < ξi|ω ∼ N (0, Ip)

]
, (5)

where

Bi = Σ
1/2
i (H1 −H0) Σ

1/2
i .

yi = Σ
1/2
i [H1 (µi − x̄1)−H0 (µi − x̄0)] .

ξi = − log

(
|H0|
|H1|

)
+ (µi − x̄0)

T
H0 (µi − x̄0)

− (µi − x̄1)
T

H1 (µi − x̄1) + 2 log
π1
π0
.

It entails from (5) that the misclassification error rate reduces
to the cumulative distribution function (CDF) of bilinear forms
of Gaussian random vectors, and as such cannot be derived in
closed-form. However, as will be shown in the next section,
an asymptotic evaluation of it can be obtained by utilizing the
central limit theorem.

III. MAIN RESULTS

In this part, we show that the classification error rate con-
verges under some mild assumptions to a some deterministic
quantity that depends on the means and covariances associated
with each class. These assumptions are designed in such a way
to avoid trivial misclassification error rates.

A. Technical Assumptions

The following assumptions are conceived in order to get
non-trivial classification error rates. For i ∈ {0, 1}, when ni,
p →∞, we make the following assumptions

Assumption 1 (Data scaling): ni

p → c ∈ {0,∞} with |n0−
n1|= o (1).

Assumption 2 (Mean scaling): Let µ , µ0 − µ1 , ‖µ‖ =
‖µ0 − µ1‖2 = O

(√
p
)
.

Assumption 3 (Covariance scaling): ‖Σi‖ = O (1).
Assumption 4 (Covariance separation): The matrix Σ0 −

Σ1 has exactly O
(√
p
)

eigenvalues of O (1) while the re-
maining ones decay at an order of O

(
1/
√
p
)
.

Assumption 1 establishes the double asymptotic regime which
implies that the number of samples are commensurable with
their dimensions. As a byproduct of Assumption 1, we have
πi → 1

2 as n, p→∞, and |αi−β1−i|= o (1). This particularly
implies that the regularization weight associated with Σi in
H0 is approximately equal to that corresponding to Σ1−i in
H1. This is useful from a technical perspective to control the
distance between H1 and H0. Assumption 2 states that the
difference of Euclidean distance between the means should
scales at the rate of O

(√
p
)

for RDA. As will be elaborated
on later, this is the growth rate that allows RDA to leverage
information about the means of both classes. Assumption
3 bounds the spectral norm of the covariance matrices and
is of standard use in random matrix theory. Assumption 4
controls the distance between covariance matrices to avoid the
situation of trivial misclassification error rates, which implies
that 1√

p tr A(Σ0 − Σ1) = O (1) for any A with bounded

spectral norm. Assumption 2 and Assumption 4 play important
roles on controlling the distance between class means and class
covariances so that the RDA classifier can present significative
performance. The importance of these assumptions will be
discussed later.

B. Central Limit Theorem(CLT)

Under Assumptions 1-4, using Lyapunov’s CLT in [8], the
work in [9] has proved that the bilinear form ωTBiω+2ωTyi
in the random vector ω with ω ∼ N (0, Ip) follows a Gaussian
distribution with mean tr Bi and variance 2 tr B2

i + 4yTi yi.
Based on this result, we thus prove that the condition classi-
fication error εi satisfies

Theorem 1: Assume λ 6= 1. Under assumptions 1-4, the
conditional classification error in (4) satisfies

εRDAi − Φ

(
(−1)

i ξi − tr Bi√
2 tr B2

i + 4yTi yi

)
a.s.−→0. (6)

R-LDA, which has been studied in [5] could not be directly
derived from Theorem 1, since it is associated with a linear
classifier, while RDA involves in general a quadratic form in
its classification rule.

C. Deterministic Equivalent

In this part, we derive the asymptotic misclassification error
rate. Prior to stating our results, we need to introduce the
following notations which stems from the use of standard tools
of random matrix theory. For i ∈ {0, 1}, denote by δi the
unique positive solution to the following fixed point equation

δi =
1

ni
tr Σi

[
(1− γ)Ip +

αi
1 + αiδi

Σ0 +
βi

1 + βiδi
Σ1

]−1
.

Define
δ̃i =

αi
1 + αiδi

,

Qi =

[
(1− γ)Ip +

αi
1 + αiδi

Σ0 +
βi

1 + βiδi
Σ1

]−1
,

and let
φ=

1

n1
tr Σ1Q1Σ1Q1.

With these notations at hand, we prove the following conver-
gences

Proposition 1: Under Assumptions 1-4, we have

1
√
p
ξi − ξi

p−→ 0, (7)

1
√
p

tr Bi − bi
p−→ 0, (8)

1

p
tr B2

i −Bi
p−→ 0, (9)

1

p
yTi yi

p−→ 0, (10)

where



ξi ,
1
√
p

log

(
1 + α0δ0
1 + α1δ1

)n0
(

1 + β0δ0
1 + β1δ1

)n1

+
1
√
p

log
|Q1|
|Q0|

+
1
√
p

[
α1δ1n0 − α0δ0n0

(1 + α1δ1) (1 + α0δ0)
+

β1δ1n0 − β0δ0n0
(1 + β1δ1) (1 + β0δ0)

]
+

1
√
p

(−1)
i+1
µTQ1−iµ.

bi =
1
√
p

tr Σi (Q1 −Q0) .

Bi ,
1

p

2n1φ

1−
(
δ̃21 + δ̃20

)
φ
− 1

p

2n1φ

1− 2δ̃0δ̃1φ
.

The detailed proofs will be provided in the full version of
this paper. Plugging these deterministic equivalents into the
misclassification error rate in Theorem 1, we obtain

Theorem 2: Under assumptions 1-4, the following conver-
gence holds for i ∈ {0, 1}

εRDAi − Φ

(
(−1)

i ξi − bi√
2Bi

)
p−→ 0.

Proof 1: It appears that ξi and bi are going to blow up
at the rate of O

(√
p
)

so that the classification error will
converge to a trivial value since 1√

p log|Qi| and 1√
p tr ΣiQi

are O(
√
p). However, because of Assumption 4, the dis-

tance of class covariances are controlled, which results in
1√
p log|Q1|− 1√

p log|Q0| being O(1) and 1√
p tr Σi(Q1−Q0)

being O(1). Take 1√
p tr Σi(Q1 −Q0) for example. We first

use resolvent identity to expand bi as follows:

bi =
1
√
p

tr ΣiQ1(Q−10 −Q−11 )Q0

=
1
√
p

(
α0

1 + α0δ0
− α1

1 + α1δ1
) tr Q0ΣiQ1(Σ0 −Σ1)

Since ||Q0ΣiQ1|| is bounded, from Assumption 4, we can
derive that 1√

p ( α0

1+α0δ0
− α1

1+α1δ1
) tr Q0ΣiQ1(Σ0 − Σ1) =

O(1). Therefore, we complete the convergence proof for
bi under Assumption 4. It is also easy to prove that
1√
p (−1)

i+1
µTQ1−iµ = O(1) using Assumption 2. In con-

clusion, these assumptions are carefully established to guar-
antee a non-trivial classification error.
Theorem 2 reveals two important facts. First, the classification
error rate can be characterized asymptotically by a deter-
ministic quantity that depends solely on the parameters of
the Gaussian model as well as the problem dimensions. The
importance of this result lies in that it not only sheds light on
the impact of these parameters but also it opens up possibilities
of properly tuning the pair of γ and λ that correspond to the
least asymptotic misclassification error rate.

Special cases:
1) As shown in [6], for the R-LDA to leverage the in-

formation about the mean classes, it suffices to have
‖µ0 − µ1‖ = O (1). In our case, when ‖µ0 − µ1‖ =
O (1), the classification error of RDA can still converge

to a non-trivial deterministic equivalence in which the
contribution of the difference in means vanishes. This
is because RDA suffers from a higher level of estima-
tion noise, requiring the distance between the means
‖µ0 − µ1‖ to scale as high as O(

√
p) so as to be

leveraged by the classifier.
2) When ‖Σ0 −Σ1‖F = O (1) and ‖µ0 − µ1‖ = O (1),

it is easy to show that b0 − b1 → 0. Therefore, we
can show that εRDA0 = φ (ω) and εRDA1 = φ (−ω)
where ω is some quantity that is the same for both
classes. Finally, the classification error ε will converge to
π0ε

RDA
0 +π1ε

RDA
1 = 0.5φ (ω)+0.5φ (−ω) = 0.5. This

indicates that when ‖Σ0 −Σ1‖F = O(1), the informa-
tion about the covariance matrices is not exploited. In
such circumstances, the use of R-LDA should be priorily
considered.

IV. EXPERIMENT

In this part, we provide numerical results to validate the
accuracy of our theoretical findings. Define the following set
of parameters for the Gaussian model: [Σ0]i,j = 0.6|i−j|,
Σ1 = Σ0 + 2A,

where A =

[
Ik Ok×(p−k)

O(p−k)×k O(p−k)×(p−k)

]
and k = b√pc.

The statistical means are taken to be µ0 = 1p×1 and
µ1 = µ0 +2p−

1
4 1p×1. In the first experiment, we validate the

correctness of our derived asymptotic error. We first estimate
the means and covariances from the training data set and
compute the empirical error by drawing ntest = 2000 samples
from testing data set. We run 200 monte-carlo simulations for
this process and take the average value for the final empirical
error. Fixing γ = 0.5, λ = 0.5 and p varying from 100 to 500,
Figure 1 shows the behavior of the classification error rate.
We can see that the asymptotic error presents good agreement
with the empirical error computed over the testing data. In a
second experiment, taking p ∈ {300, 400, 500} and c = 1,
we want to verify what trends the classification error will
present with the variation of both regularization parameters
γ and λ. Since our derivations for RDA cannot generalize to
R-LDA, we will compare the performance of R-LDA with
RDA in terms of classification error separately. Finally, we
get the 3D plots about RDA and R-LDA’s variation trends of
classification errors as shown in Figure 2. The blue curved
planes are the misclassification error of R-LDA with variation
of γ and the colorful surfaces are misclassification error of
RDA with variation of γ and λ. It is clear from the plots
that the minimum classification error is achieved in the most
red region of the RDA surface below the R-LDA curved
plane. Regularization parameter λ approaching the minimum
classification error is neither 1 nor 0, which means that the
optimal classifier minimizing the classification error is not one
of the extreme cases, namely, neither R-LDA(λ = 1) nor R-
QDA (λ = 0). Instead, it lies somewhere between R-LDA
and R-QDA, which aligns with our expectation that RDA
offers better classification performance than R-LDA and R-
QDA with proper regularizers selection.
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Fig. 1. RDA classifier performance in terms of classification error with equal training, n0 = n1. The x axis is the number of the data dimension.
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Fig. 2. Comparison of performance of RDA and R-LDA in terms of classification error with equal training, n0 = n1. The x axis is regularization parameter
λ and y axis is regularization parameter γ for p ∈ {300, 400, 500} and c = 1.

V. CONCLUSION

In this paper, we consider the double asymptotic regime
where the sample size and data dimension increase compar-
atively in magnitude to study the performance of the RDA
classifier. Under some mild assumptions controlling the dis-
tance between the class means and covariances, we show that
the asymptotic classification error converges to a deterministic
quantity relying merely on the data dimension and statistics of
each class. This conclusion enables us to design an improved
classifier by selecting a pair of regularization parameters that
minimize the asymptotic classification error. We validate the
accuracy of our theoretical findings using synthetic data which
allows to see the advantage of using the RDA classifier as
compared to its special cases R-LDA and R-QDA.
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